Nilai lim_(x→π/2)⁡ (sin⁡ x tan⁡(2x-π))/(2π-4x)=⋯

www.jagostat.com

www.jagostat.com

Website Belajar Matematika & Statistika

Website Belajar Matematika & Statistika

Bahas Soal Matematika   »   Limit   ›  

Nilai \( \displaystyle \lim_{x \to \pi/2} \ \frac{\sin x \tan (2x-\pi)}{2\pi - 4x} = \cdots \)

  1. \( -\frac{1}{2} \)
  2. \( \frac{1}{2} \)
  3. \( \frac{1}{3}\sqrt{3} \)
  4. \( 1 \)
  5. \( \sqrt{3} \)

(SPMB 2005)

Pembahasan:

\begin{aligned} \lim_{x \to \pi/2} \ \frac{\sin x \tan (2x-\pi)}{2\pi - 4x} &= \lim_{x \to \pi/2} \ \frac{\sin x \ (-\tan (\pi-2x))}{2(\pi - 2x)} \\[8pt] &= -\frac{1}{2} \cdot \lim_{x \to \pi/2} \ \sin x \cdot \lim_{x \to \pi/2} \ \frac{\tan (\pi-2x)}{(\pi - 2x)} \\[8pt] &= -\frac{1}{2} \cdot \sin (\pi/2) \cdot 1 = -\frac{1}{2} \cdot 1 \cdot 1 \\[8pt] &= -\frac{1}{2} \end{aligned}

Jawaban A.